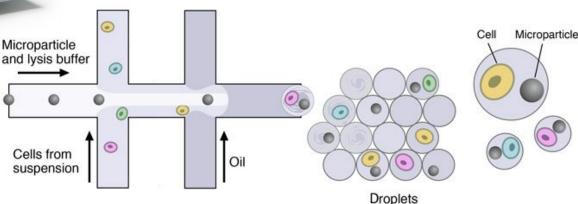
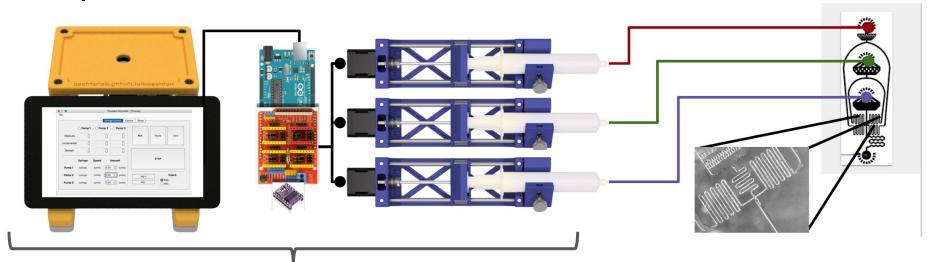
Principles of Open Source Bioinstrument Design


Anne Kil, Jase Gehring, Sina Booeshaghi 10 October 2019

Single-cell RNA Seq profiles thousands of cells



← Cost for a single 10xGenomics Machine \$75kCost per run: \$1500

Cost for a DropSeq rig → and Pumps \$10K Cost per run: \$600


The problem: syringe pump/microscopes expensive, not hackable

Poseidon Cost: ~\$310

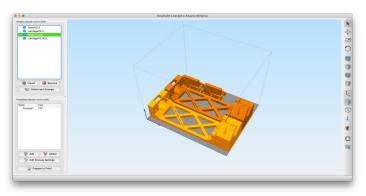
The solution: poseidon an open source syringe pump and microscope system

We followed 6 Principles of Bioinstrumentation to tackle the problem

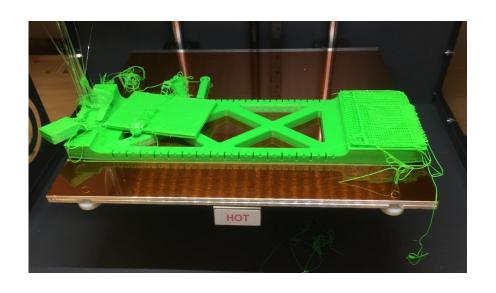
- 1. Functionality (Follow functional requirements)
- 2. Simplicity (Avoid complicated solutions)
- 3. Modularity (Use standard components)
- 4. Robustness (The "idiot user" approach)
- 5. Benchmarking (Test and retest and retest)
- 6. Documentation (Videos, pictures, text)

Recommendation: print out a list like this and post it to your wall. It can help serve as a template for making design decisions.

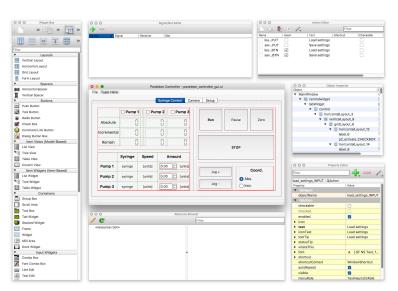
Functionality: Always start with a set of functional requirements


Specification	Description	Associated Value		
Pump Size	Can be printed in one shot	Build Volume 8 x 8 x 10 in		
Syringe Sizes	Adaptable to BD syringe	[1, 3, 5, 10, 20, 30, 60] mL		
Desired Flow Rate	from DropSeq Protocol*	1,000-15,000 µL/hr		
Stepper Motor Driven	Run off of Arduino 12VDC	200 steps/rev w/ 32 µstep		
Microscope	Magnification	Image microfluidic device		
Cost	Total cost of the system + parts	<\$500		

With these requirements in mind, we selected the appropriate design tools



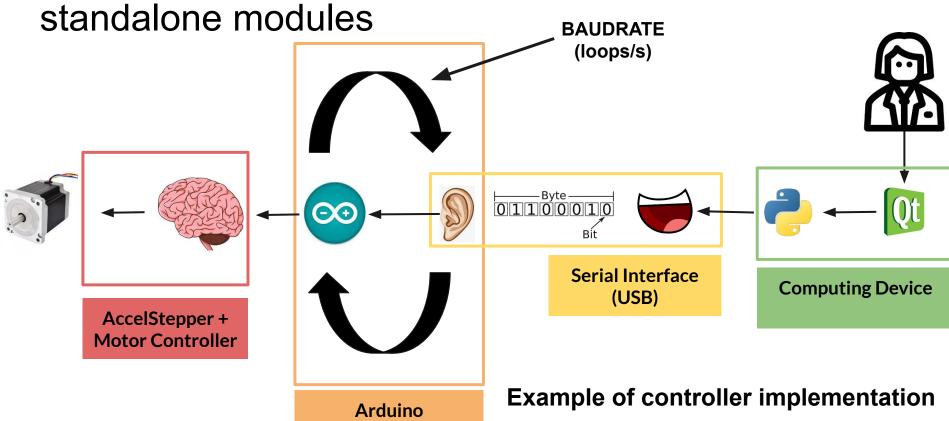
Then we began designing and iterating..



Simplicity: We wanted the system to be simple enough to use but flexible enough to hack

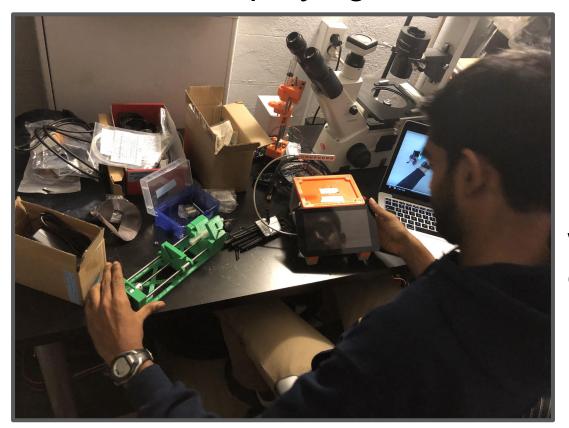
Hardware:

Plug and play parts, no soldering required

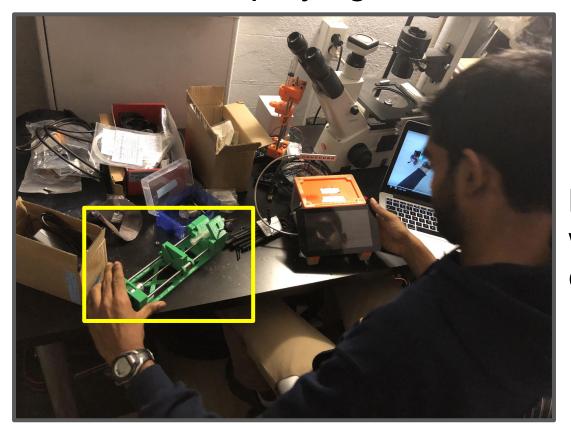


Software:

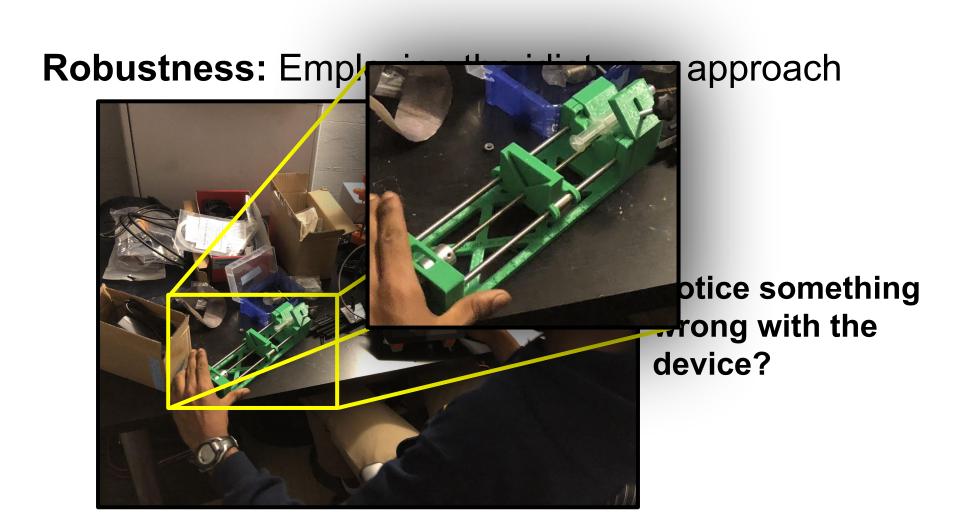
Drag and drop GUI development, controls written in python


Modularity: System can be broken down into

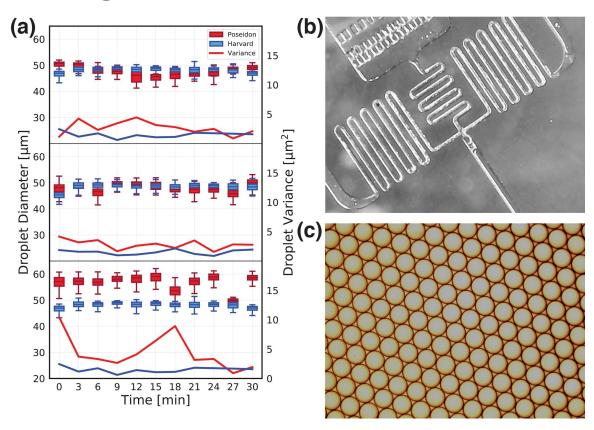
Modularity: We used standard components

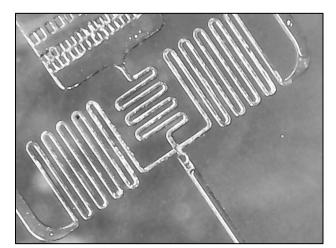

Syringe Pump Array		Cost per pump	31.445							
Total for 3 pumps	\$141.92									
Item Number	Item Description	Items per package	Items per Pump	Items per 3 pumps	Packages per 3 pumps	Cost per Package	Price per item	Cost per 3 pumps	Cost per pum	Supplie
1	Nema 17 Stepper Motor (Bipolar, 40mm, 59Ncm)	3	1	;	3 1	31.99	10.66333333	31.99	10.6633333	3 Amazon
2	5mm to 5mm Motor Shaft Coupling	10	1	;	1	22	2.2	22	2	2 Amazon
3	6mm Steel Rod (length 200mm, pack of 2)	2	2		3	6.24	3.12	18.72	6.2	1 Amazor
4	6mm Linear Bearing (pack of 12)	12	2	(3 1	10.66	0.8883333333	10.66	1.77666666	7 Amazor
5	M5x0.8 Threaded Rod (length 170mm)	5	1	;	1	7.98	1.596	7.98	1.59	6 Amazor
6	M5x0.8 nut	50	2		1	6.23	0.1246	6.23	0.249	2 Amazor
7	M3x0.5 socket head screws to mount motor (length 20	100	4	1:	2 1	8.47	0.0847	8.47	0.338	3 Amazor
8	M5 knob (hold syringe in place)	10	1	;	1	11.9	1.19	11.9	1.1	Amazor
9	12V power unit (end stripped to fit CNC shield power in	1	0.3		1 1	9.89	9.89	9.89	2.96	7 Amazor
10	Arduino + CNC Shield Pack + DRV8825 (4)	1	0.3		1	14.08	14.08	14.08	4.22	4 Amazor
Microscope		Per Microscope	160.2768							
licroscope Total	\$169.01									
Item Number	Item Description	Items per package	Items per microscope	Packages per microscope	e Cost per package	Price per item	Miscroscope cost			Suppl
1	Raspberry Pi Motherboard	1	1		34.99	34.99	34.99			Amazo
2	Raspberry Pi 7" touchscreen display	1	1		68.7	68.7	68.7			Amazo
3	Raspberry Pi Power Suppy (5v 1.5A DC)	1	1		9.99	9.99	9.99			Amazo
4	16gb MicroSD card (comes with adapter)	1	1		7.17	7.17	7.17			Amazo
5	Keyboard + Mouse Bundle (wired)	1	1		1 14.44	14.44	14.44			Amazo
6	M5x0.8 Socket Head Screw (length 14mm)	15	8		7.5	0.5	4			Amazo
7	M5x0.8 nuts	50	8		6.23	0.1246	0.9968			Amazo
8	USB Camera	1	1		1 19.99	19.99	19.99			Amazo
Project Total	\$310.93									

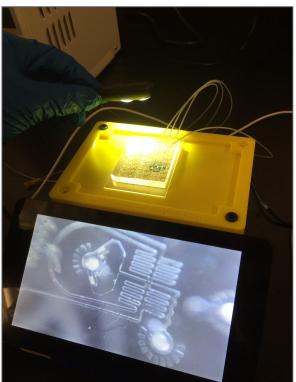
Robustness: Employing the idiot user approach

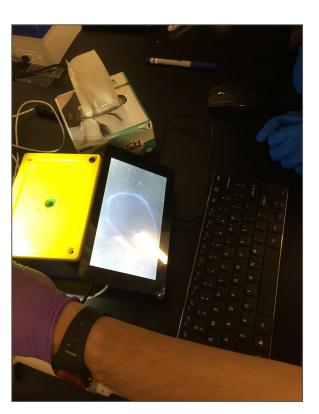


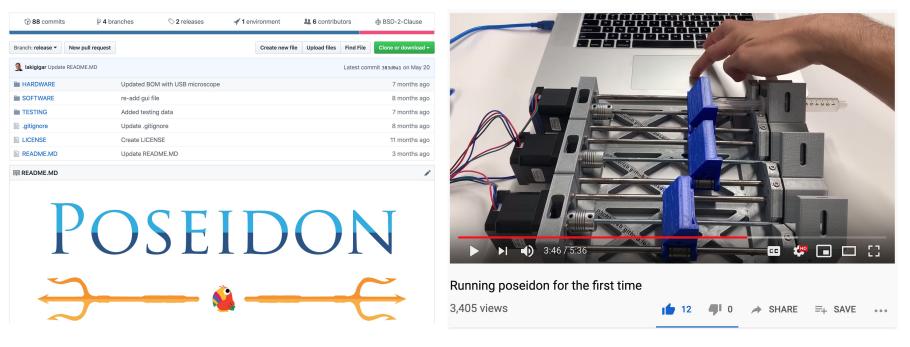
Notice something wrong with the device?


Robustness: Employing the idiot user approach


Notice something wrong with the device?




Benchmarking: Test and retest and retest


Benchmarking: Test and retest and retest

Documentation: The most important (and hardest) part of designing

[&]quot;Any code written by oneself six or more months ago should be considered someone else's code"

Recap: Principles are good, only if you follow them

- 1. Functionality (Follow functional requirements)
- 2. Simplicity (Avoid complicated solutions)
- 3. Modularity (Use standard components)
- 4. Robustness (The "idiot user" approach)
- 5. Benchmarking (Test and retest)
- 6. Documentation (Videos, pictures, text)

Recommendation: print out a list like this and post it to your wall. It can help serve as a template for making design decisions.

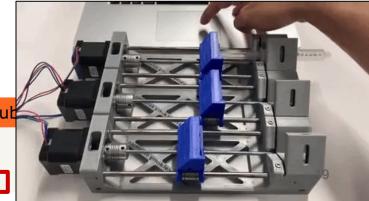
Marketing Efforts.

 Abstract
 Full-text HTML
 PDF

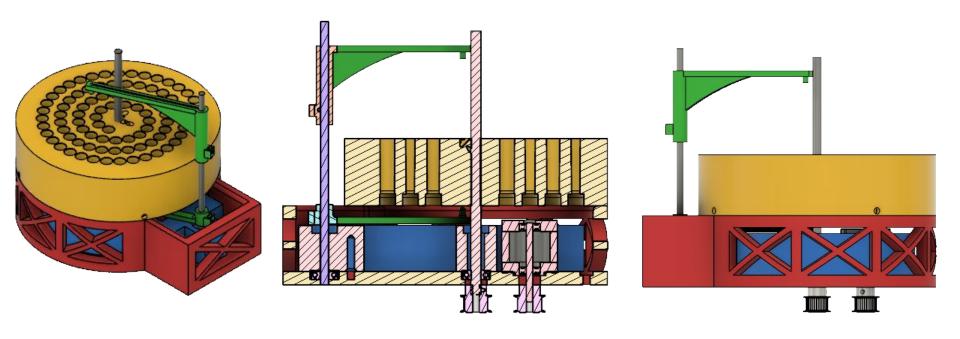
 3,371
 195
 2,832

Blogged by 1
Tweeted by 70

13 readers on Mendeley



18



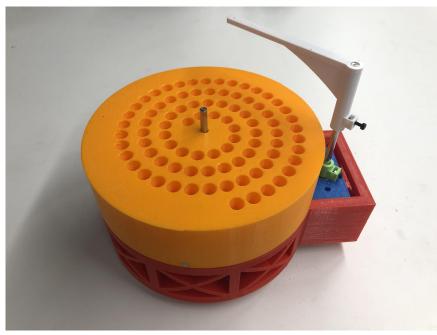
Open-sourcing bioinstruments (liorpachter.wordpress.com)

77 points by homarp 4 days ago | flag | hide | past | web | un-favorite | 33 comments

Future: Applying these principles to other projects

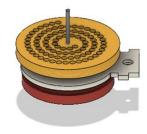
Automated fraction collector, work done with Anne Kil (Pachter Lab SURF '19)

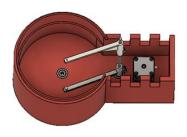
What is a fraction collector?

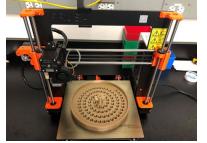

Model	# of tubes	Price (USD)
GE Frac30	30	1,703
Eldex UFC	135 or 160	3,707
Spectrum Spectra FC	174	4,583
Buchi C-660	12, 30, or 60	12,141
Open-source	Customizable	<100

GE Healthcare's Frac 920, \$2,400 for used

The open-source fraction collector, colosseum




How did we make the colosseum fraction collector?





Difficulties and Challenges

Technical difficulties:

- Streaming commands to the Arduino
- Figuring out 3D printer tolerances
- 3D printer problems

Design challenges:

- Simplifying design
- Benchmarking commercial devices

A many thanks to those who helped on the project

Professor Lior Pachter

Jase Gehring

Eduardo Da Veiga Beltrame

Dylan Bannon

*Not pictured: Anne Kil

Project website: https://pachterlab.github.io/poseidon/hardware

If you like these kinds projects then reach out to us!

We can work together to develop all sorts of novel bioinstruments. Our goal is to produce open, reliable, and modifiable bioinstruments for academic, medical, and research applications.

Examples of possible projects:

- 1. Fast Pressure Liquid Chromatography (Protein purification)
- 2. Vacuum driven microfluidics
- Automated cell culture

Or just stop by our offices in the basement of Kerckhoff to check out our lab.