
BE/EE/MedE 189a: Design and
construction of biodevices

Justin Bois

Caltech

© 2017 Justin Bois and Changhuei Yang.
This work is licensed under a Creative Commons Attribution License CC-BY 4.0.

https://creativecommons.org/licenses/by/4.0/

1 LabVIEW basics

In this class, we will use aNational Instruments ELVIS II breadboard to build out de-
vices. We will connect these breadboards to a computer to received signals and con-
trol components. To facilitate this communication, we will use LabVIEW, a software
package produced by National Instruments.

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a visual
programming language (VPL) in that the programmer manipulates graphical ele-
ments to design a program instead of using text. Further, LabVIEW programs are
intended to provide computer-based functionality that mimics that of a real, physi-
cal elecotronic instrument in a laboratory. For this reason, LabVIEW programs are
referred to as virtual instruments, or VIs.

A classic example of such a virtual instrument is an oscilloscope, depictd in Fig. 1,
which allowsmeasurement and display of constantly varying voltages over time. The
left oscilloscope is a physical instrument, with its display panel showing a plot of volt-
age over time. To the right is a LabVIEW implementation of a virtual oscilloscope.
The virtual oscilloscope has knobs and buttons like the physical instrument and a
live plot, but the “electronics” of the virtual instrument are graphic computer code
behind the front panel with the knobs and display.

real oscilloscope virtual oscilloscope

Figure 1: Left, a physical oscilloscope. Right, a virtual oscilloscope.

1.1 VI components: Front Panel and Block Diagram

When you open a new VI, which you can do by selecting New VI from the File pull-
down menu, you will get two windows, one in back labeled Block Diagram and on in
front labeled Front Panel. Fig. 2 shows the front panel and block diagram for a VI that
generates a waveform.

As the name suggests, the front panel is the interface of theVI. Like any computer
program, the interface takes inputs and displays or generates outputs. In LabVIEW
speak, inputs are called controls and outputs are called indicators.

1

Figure 2: Left, a front panel of a waveform generator. Right, a block diagram of
an waveform generator.

The block diagram contains the guts of the program. When you create controls
and indicators in the front panel, the corresponding components appear in the block
diagram as colored objects called terminals. The block diagram contains arithmetic
operations, functions, constants, subVIs (akin to a submodule). The inputs and out-
puts of these objects flow through wires, which connect the object.

In my typical workflow, I build the front panel first. This is what I want my in-
strument to do and how Iwant to be able to control it. If you are used to programming
in other languages, you can think of front panel design as design of your API, which
you typically do first.

1.2 An example VI: Fahrenheit to Celsius converter

This is all rather abstract, and perhaps a bit complicated since a waveform generator
is not the simplest VIwe could imagine. Consider now aVI for converting an inputed
number in degrees Fahrenheit to degrees Celsius, shown in Fig. 3.

Figure 3: A VI for Fahrenheit to Celsius conversion.

First, let’s consider the front panel. We have a control (or input) in which the
user specifies a number corresponding to the temperature of interest in degreesFahren-
heit. There is an indicator (or output) that gives the same temperature in degrees
Celsius.

2

Looking at the block diagram, we see an input of data type DBL, or double. To
convert to Celsius, we use the following formula.

C =
5
9
(F− 32). (1.1)

So, we first subtract 32 from the inputted degrees Fahrenheit. This is accomplished
with the minus mathematical operator. It takes two inputs, shown by the two orange
wires to the left of the minus operator, and subtracts the bottom input from the top.
So, the wires carry variables into operators. Coming out of that minus operator is the
resulting difference of the two inputs. This then flows into a multiplication operator,
which also takes two inputs, and thenmultiplies them together. We need to multiply
by five, so this is the other input. The output is then divided by nine and delivered
to the Celsius indicator.

1.3 The controls palette

You can add controls and indicators to your front panel using theControls Palette. If
it is not already in view, you can make it visible by selecting View→Controls Palette.
An example annotated front panel is shown in Fig. 4, and an example controls palette
is shown in Fig. 5. To add a control or indicator to the front panel, simply click on
the icon in the controls palette and drag it onto the desired space in the front panel.

Figure 4: An annotated front panel for a waveform generator with various con-
trols and indicators.

1.4 The functions palette

As the controls palette is your main resource for designing your front panel, the
Functions Palette is yourmain resource for designing your block diagram. An anno-
tated functions palette is shown in Fig. 6, and an example functions palette is shown
in Fig. 7. The block diagram has awhile loop and a subVI, both of whichwewill cover

3

Figure 5: An example controls palette.

in coming lab sessions. The functions palette shows a subset of the many functions
available.

Figure 6: An annotated block diagram for a waveform generator. In the center
is a subVI, which we will learn about in coming days.

1.5 The tools palette

TheTools Palette is useful for selecting and connecting element of your VI that you
drug in from the functions and controls palettes. The wiring tool, which looks like
a spool of wire, is used to connect objects in the VI. The position tool (the arrow) is
used to select objects and then to position them. The pointed finger tool is used to
operate your switches, knobs, sliders, etc., on the front panel.

Importantly, by selecting the automatic tool selection, LabVIEWwill infer which
tool you want to use based on where your pointer is. This is quite useful and can save
you some clicking.

4

Figure 7: An example functions palette.

Figure 8: The annotated tools palette.

1.6 Tools to make your VI look pretty

Just as style is important in text-based programming, so too is it important in Lab-
VIEW. Fortunately, LabVIEWoffers several tools to prettify your VI. On the tool bar
of both the front panel and the block diagram are alignment, distribution, and resiz-
ing tools for objects. You can spot them from the green and yellow colored boxes on
their tabs. These tools workmuch as similar tools work in drawing/layout programs,
such as Illustrator or PowerPoint.

You can also “clean” your wires, which can get bendy based on where the input
and output nodes are by selecting a wire with the position tool and then right click-
ing and selecting Clean Up Wire. LabVIEW will then do its best to straighten and
otherwise prettify the wire.

You can take a more, shall we say, fervent approach by clicking on the Clean Up
Diagram button at the right of the toolbar of the block diagram window (the icon
has a addition operator with a broom). This chooses an arrangement of objects and
wires that is in some way optimal. Except for very simple VIs, I usually do not take
this option because the rearrangements can sometimes be extreme. The result is

5

straighter wires and convenient spacing, but my reasoning for how I set up the block
diagram is destroyed.

1.7 Running your VI

After you have built a VI, you want to run it. To run a VI once, click the forward
white arrow on the toolbar of the front panel. Alternatively, you can hit Ctrl+R or
selectOperate→ Run.

LabVIEWhas the useful capability of running continuously. That is, it will listen
for a change in a control, such as the user changing the value of a slider, and then
change the indicator on the fly. To run continuously, click the two cycling arrows on
the toolbar of the front panel.

You can abort execution by clicking the stop sign on the front panel toolbar, or
pause executing by clicking the pause button.

1.8 A little practice

Before diving into your first homework, you might want to practice making a cou-
ple VIs. For your first practice, make a front panel with a couple of vertical toggle
switches that you can flip up or down. Add an LED indicator that turns on in all
instances except when both switches are up (a NAND gate). The VI is shown in
Fig. 9.

Figure 9: A VI for a NAND gate.

For your secondpractice, implement theFahrenheit toCelsius converter inFig. 3.

6

2 Data types, cases, and subVIs

In this lesson, I will present a hodgepodge of topics to help you gainmore capabilities
with LabVIEW.

2.1 Data types

Whether you are programming in LabVIEW or pretty much any other language, you
will be working with variables. The following can be properties of a variable:

1. The type of variable. E.g., is it an integer, like 2, or a string, like ’Hello, world.’?

2. The value of the variable.

LabVIEWhasmany data types. For now, wewill focus on three data types, numeric,
string, and Boolean.

1. Numeric data are integers and floats. For controls (remember, “control” is
LabVIEW speak for “input”, which you put in the front panel), the numeric
data type may be specified by right clicking the object, selecting Representa-
tion, and then choosing among the data types. There are many integer types,
e.g., U16 is an unsigned 16-bit integer. Floats can be double (DBL, the de-
fault), or single (SGL). You may also specify extended precision (EXT), which
depends on your hardware and operating system. LabVIEW also has capabili-
ties for complex numbers, such as CDB for a complex double.

2. Strings are an array of characters. Importantly string comparison in LabVIEW
is done character-by-character comparing the ASCII value of the characters.
E.g., abc < abcd < e. Identical strings are considered equal.

3. Booleans take on values of TRUE or FALSE. Internally, they are stored as 8-bit
values. Anything that is nonzero and cast as Boolean evaluates TRUE.

These basic data types can be organized into higher order structures, such as
arrays and clusters, which we will talk about in coming lessons.

To convert formone data type to another in the block diagramof aVI, you can use
the operators in the Programming→ Numeric→ Conversion pane of the Functions
palette.

2.2 Useful quick-keys

As a graphical language, you will be pointing and clicking with your mouse a lot. It is
nice to know a few quick keys.

7

Ctrl-S Save a VI

Ctrl-R Run a VI

Ctrl-E Toggle between the front panel and block diagram

Ctrl-H Toggle the Context Help window

Ctrl-B Remove all bad wires

Ctrl-W Close the active window

Ctrl-F Find objects or text

Ctrl-Tab Cycle through LabVIEW windows

These are just a few. You should check out this reference guide from the National
Instruments website.

2.3 Debugging tools

As with any code, you are likely to have bugs in your LabVIEW VIs. Fortunately,
LabVIEW has some debugging tools to help you find and fix your bugs. If there is
the graphical programming equivalent to a syntax error, that is an error that prevents
LabVIEW from compiling your VI, the normally white, intact Run arrow will be gray
and broken, as shown in Fig. 10. If you click on it, you will get an Error list, which
will show descriptions of the errors in your front panel and block diagram. If you
click the ShowWarnings checkbox, you will also see warnings that do not necessarily
prevent compilation, but are bad programming practice and can lead to bugs.

Figure 10: A block diagram toolbar with debugging tools highlighted.

You click the Highlight execution button (a lightbulb) to visually show the VI ex-
ecution. This is much like a standard debugger and reduces performance. Finally,
you can select single-step modes to step into or step over a node in a black diagram.

You can insert breakpoints into your code using the Breakpoint button on the
Tools Palette (Fig. 11). You can also insert a probe, allowing you to observe variable
values while your VI is running.

8

http://www.ni.com/pdf/manuals/373353c.pdf

Figure 11: Left, illustration of break points and probe tools. Right, example
probe watch window.

2.4 Case structures (LabVIEW’s if else if)

Case structures allow you to implement if else if-type statements in LabVIEW.They
behave like switch cases in C and Java. Their graphical representation is illustrated in
Fig. 12.

Figure 12: Case structures with different types of input.

Let us consider first the case structure that takes a Boolean as input. There are
then only two possible cases, TRUE or FALSE. To enter objects into the case structure,
you need to place objects and wires in the box. To toggle between what operations
happen in the TRUE case and the FALSE case, you click on the menu at the top of the
case structure box.

Wecan also input a string orEnum control (a ring-style control—remember“con-
trol” is LabVIEW speak for “input”). If this type of control comes into the case
structure, you are unrestricted in the options for the cases, i.e., you are no longer re-
stricted to either TRUE or FALSE. Therefore, you must specify a default case (akin
to the else clause of an if else if statement).

Finally, you can have numeric control. LabVIEW has strange behavior for nu-
meric control and, in my opinion, you are asking for bugs if you directly input nu-
meric control. I will therefore not comment any further on this, and just advise you
not to do it.

9

2.5 Modular programming: SubVIs

When you write text-based code, you often write functions that do specific, small
tasks. They have a prototype; they takin input, perform operations on it, and then
return output. You larger scale program or project calls these functions in succes-
sion, perhaps with logic and looping. This is generally good practice, to domodular
programming.

The same is true for LabVIEW. Any VI you write can be incorporated into another
VI.When a VI is used in another, it is called a subVI. When building your LabVIEW
programs, you should create many small VIs that performwell-defined takes that are
simply and clearly connected in your main VI.

To have a concrete example in mind, consider a VI that evaluates blood pressure
measurements to give a categorical characterization. The category of blood pressure
is given in the table below, where the more severe category is chosen.

Systolic Diastolic Category
< 120 AND < 80 Normal

120− 139 OR 80− 89 Prehypertension
140− 159 OR 90− 99 Stage 1 high blood pressure
≥ 160 OR ≥ 100 Stage 2 high blood pressure

The block diagram for the main VI for this program and that for the subVI are
shown in Fig. 13. This example is somewhat trivial in that the subVI is the entirety
of the routine, but serves to show how subVIs can be situated in a VI.

Figure 13: Left, block diagram of top level VI for a categorial indicator of blood
pressure. Right, the block diagram for the subVI at the heart of the program.

To make your existing VI capable of being inserted as a subVI, you need to take
a few steps working on the front panel of your VI. In the upper right corner of the

10

VI is an icon that looks like an an oscilloscope with an addition operator. This will
be the icon representing your subVI when you insert it in another VI. To edit this,
right click on the icon an select Edit Icon.... You can then edit the icon with rather
primitive and annoying tools. I usualy just make the icon a box with text in it.

After choosing your icon, you need to specify how your subVI connects to con-
trols and indicators (inputs and outputs). To do this, right click on the icon and
select Show Connector (step 1 in Fig. 14). Click on the connector, which not replaces
the icon. (On newer versions of LabVIEW, the connector is always shown next to
the icon.) Right click the connector and select Patterns, and a palette of connector
patterns appears. The default pattern is a 4× 2× 2× 4 This allows for four inputs
to the left and four outputs to the right. Some LabVIEW users advocate for always
using the default, even if you do not need that many inputs and outputs. I advocate
against this because this is poor programming practice: you should prototype your
subVI so that you know what inputs and outputs to expect. You should pick the in-
put/output pattern that is appropriate for your function. Next, use the wiring tool to
select which controls and indicators in your front panel correspond to which inputs
and outputs in your connector pattern (steps 3 and 4 for Fig. 14). After saving, you
will have a subVI that you can plop into any other VI you aremaking. The inputs and
outputs behave like the controls and indicators of the front panel of the original VI.

Figure 14: The steps to enabling a VI to be a subVI.

To add a subVI to a block diagram you are working on, scroll to the bottom of

11

the Functions Palette and click on Select a VI.... You will then be able to wire it up
according to your specification of the connector pattern.

To get an overview of how all of the subVIs are connected and depend on each
other in a top level VI, click on View→ VI Hierarchy.

12

3 Arrays, clusters, and plotting

3.1 Clusters

We saw last time that more than numbers can flow through wires in a VI. We made
error clusters and we propagated through our VI. I did not carefully define what a
cluster is. A cluster is a grouping of objects, must like a structure in C or a dictionary
in Python.1 When we make an error cluster, we specify an error code and an error
message, and optionally whether the error is a warning and whether or not to show
the full chain when the error is encountered, which are updated in an existing error
cluster. Conveniently, we can run the entire cluster through wires in the diagram.

Figure 15: Left, controls for clusters for the front panel. Right, annotated clus-
ter functions from the Functions Palette.

We canmake clusters beyond error clusters. To insert a cluster in the front panel
of a VI, choose Cluster in the Array, Matrix & Cluster menu of the Controls Palette
(see Fig. 15). Once you drag this onto the front panel of your VI, you can drag what-
ever in controls you want to bundle into this cluster.

In the back panel, we can unpack clusters using the Unbundle object from the
Functions palette (seeFig. 15). We can also bundle objects together into a newcluster
using the Bundle object in the same palette.

To see an example use of clusters, see the mass_of_air.vi sample VI that com-
putes themass of air given the pressure, volume, and temperature using the ideal gas
law.

1A LabVIEW cluster is actually more like a namedtuple from the collectionsmodule of the Python
Standard Library. A LabVIEW cluster is not a hash table like a Python dictionary.

13

This tutorial is useful to learn about both clusters and arrays.

3.2 Arrays

Arrays are similar to clusters in that they are ordered collections of objects. They
differ in that all of the objects must be of the same type. Further, arrays may be
multidimensional, not just an ordered one-dimensional array. Because all of the data
are of the same type, more operations may be done on arrays.

Arrays are indexed, as in other languages. Importantly LabVIEW array indexing
starts at zero. You can index an array using that Index Array object in the Functions
→ Programming→ Array palette (see Fig. 16).

Figure 16: Annotated palette of array functions.

To create an array in the front panel, drag an Array object onto your front panel,
as in Fig. 17. You will then need to populate it with a numeric constant or a strong
constant to specify the data type of the array. When it appears on your front panel,
the arraywill have an index selector to the left and then the values of the entries of the
array to the right. If you want to make a two or more dimensional array, you can right
click on the index selector and selectAddDimension. You can do a similar procedure
by adding an array constant to a block diagram.

The array function palette (Fig. /16) has lots of options for building and modi-
fying arrays. For an example of using the Insert Into Array function to split an array
into two arrays, one containing the nonnegative values in the original and the other
containing the negative ones, see pos_neg_array.vi.

14

http://www.ni.com/white-paper/7571/en/

Figure 17: How to add an array control.

3.2.1 Operations on arrays

Arithmetic operations on arrays are elementwise. For example, if you add two arrays
bywiring them into a+ operator, the result is an arraywhere like-indexed input values
are added together. If you add an array and a scalar, the scalar value is added to each
element of the array, with the result being an array. Similar results happen for other
operations.

What happens when you add two arrays of different lengths? The result is an
array equal to the length of the shorter array. I personally think this is a terrible
idea. It just invites bugs. Therefore, Beware. You might see unexpected behavior
in your VIs because of this. You might want to write your own VI that does error
checking for array operations with arrays of different sizes, such as in the example
add_arrays_with_error.vi.

3.2.2 Matrices

What if instead of doing elementwise multiplication of two 2D arrays (where one is
m × p and the other is p × n), I want to do a matrix multiplication? We can still use
a two arrays and use the A× B function in the linear algebra palette (see Fig. 18).

Alternatively, I could convert the arrays into a newdata type called amatrix. The
× operator then acts like matrix multiplication on these objects. In my view, this is
another bad idea. Use of the A × B function is unambiguous; it is completely clear
that you are attempting matrix multiplication. Matrices and arrays are stored in the
same way for LabVIEW, and there is no performance boost for using matrices versus
arrays. I am of the opinion that you should never use matrices. The added flexibility
is not helpful; it just opens you up to hard-to-find bugs. You can do all the matrix
calculations you need using arrays, and matrices were not even added to LabVIEW

15

until version 9.0 (I think).

3.3 Polymorphism in LabVIEW

Polymorphism is generally the idea that a given interface, say to a function, accepts
inputs of different types and then does operations on them according to the type.
One way this is achieved in Python, for example, is by operator overloading.

3 + 4 = 7

'base' + 'ball' = 'baseball'

The Python + operator can work on data of different types. LabVIEW also features
polymorphism. The LabVIEW + operator can take different data types, as we have
seen; it can take scalars or arrays, or a mix (or other types as well, including clusters;
check out the sample VI array_cluster_polymorphism.vi to see how array oper-
ations can work on clusters). Usually, the choice of operation based on input type is
intuitive, but not always, as we saw in the example of two arrays of different lengths.
(I would expect an error to be raised.)

I bring up this polymorphism because it is at once convenient and dangerous.
Your code might work in unexpected ways depending on the types of inputs you
give. Caveat emptor.

3.4 Making x-y plots

LabVIEW’s plotting applications are primarily built for real-time monitoring of sig-
nals. After all, you are creating virtual instruments. As a result, its plotting capabili-
ties are limited, but nonetheless useful.

Plots are shown in the front panel, usually as indicators. To make a plot of x-y
data, I usually use the Ex XYGraphVI from theGraph palette of the Controls palette.
Dragging this onto your front panel will create the graph, along with an object on the
back panel. By right clicking on the graph, you can set properties, such as how the
data are represented (points versus lines, etc.).

To see an example of the construction of an x-y plot of one ofmy favorite data sets
(relative levels of Bicoid protein across aDrosophila embryo from the classic Driever
and Nüsslein-Volhard paper), see plot_bcd_profile.vi. Note that you wire in an
array of x-values and y-values to specify the data points.

16

3.5 Waveform charts and graphs

More typically, you will want to monitor real-time signals that have evenly sampled
points. To do this, you can use Waveform charts and graphs. To make a waveform
chart or graph, drag theWaveform Chart orWaveform Graph onto your front panel.
Once in the front panel, you can change the xaxis labels, as well as the plot title,
which is to the top left. At the top right is the plot legend, which you can right click
on to alter the appearance of the plot.

In the block diagram, a wave chart takes as input a scalar value. The plot is con-
structed as the value coming into the wave chart changes. This is in contrast to a
wave graph, which takes an array of data points as input. Alternatively, you can con-
struct a cluster that has the starting time, the time between samples, and the array
containing the signal. This will scale the x (time) axis appropriately.

To see examples of awaveformchart and awaveformgraph, look atwf_chart_and_graph.vi.
Note that the waveform chart is inside the for loop, while the waveform graph is out-
side. An array is automatically created within the for loop, which is outputted to the
waveform graph.

17

Figure 18: The linear algebra palette.

18

	LabVIEW basics
	VI components: Front Panel and Block Diagram
	An example VI: Fahrenheit to Celsius converter
	The controls palette
	The functions palette
	The tools palette
	Tools to make your VI look pretty
	Running your VI
	A little practice

	Data types, cases, and subVIs
	Data types
	Useful quick-keys
	Debugging tools
	Case structures (LabVIEW's if else if)
	Modular programming: SubVIs

	Arrays, clusters, and plotting
	Clusters
	Arrays
	Operations on arrays
	Matrices

	Polymorphism in LabVIEW
	Making x-y plots
	Waveform charts and graphs

