
BE/EE/MedE 189a: Design and
construction of biodevices

Justin Bois

Caltech

Winter, 2017

© 2017 Justin Bois and Changhuei Yang.
This work is licensed under a Creative Commons Attribution License CC-BY 4.0.

https://creativecommons.org/licenses/by/4.0/

2 Data types, cases, and subVIs

In this lesson, I will present a hodgepodge of topics to help you gainmore capabilities
with LabVIEW.

2.1 Data types

Whether you are programming in LabVIEW or pretty much any other language, you
will be working with variables. The following can be properties of a variable:

1. The type of variable. E.g., is it an integer, like 2, or a string, like ’Hello, world.’?

2. The value of the variable.

LabVIEWhasmany data types. For now, wewill focus on three data types, numeric,
string, and Boolean.

1. Numeric data are integers and floats. For controls (remember, “control” is
LabVIEW speak for “input”, which you put in the front panel), the numeric
data type may be specified by right clicking the object, selecting Representa-
tion, and then choosing among the data types. There are many integer types,
e.g., U16 is an unsigned 16-bit integer. Floats can be double (DBL, the de-
fault), or single (SGL). You may also specify extended precision (EXT), which
depends on your hardware and operating system. LabVIEW also has capabili-
ties for complex numbers, such as CDB for a complex double.

2. Strings are an array of characters. Importantly string comparison in LabVIEW
is done character-by-character comparing the ASCII value of the characters.
E.g., abc < abcd < e. Identical strings are considered equal.

3. Booleans take on values of TRUE or FALSE. Internally, they are stored as 8-bit
values. Anything that is nonzero and cast as Boolean evaluates TRUE.

These basic data types can be organized into higher order structures, such as
arrays and clusters, which we will talk about in coming lessons.

To convert formone data type to another in the block diagramof aVI, you can use
the operators in the Programming→ Numeric→ Conversion pane of the Functions
palette.

2.2 Useful quick-keys

As a graphical language, you will be pointing and clicking with your mouse a lot. It is
nice to know a few quick keys.

7

Ctrl-S Save a VI

Ctrl-R Run a VI

Ctrl-E Toggle between the front panel and block diagram

Ctrl-H Toggle the Context Help window

Ctrl-B Remove all bad wires

Ctrl-W Close the active window

Ctrl-F Find objects or text

Ctrl-Tab Cycle through LabVIEW windows

These are just a few. You should check out this reference guide from the National
Instruments website.

2.3 Debugging tools

As with any code, you are likely to have bugs in your LabVIEW VIs. Fortunately,
LabVIEW has some debugging tools to help you find and fix your bugs. If there is
the graphical programming equivalent to a syntax error, that is an error that prevents
LabVIEW from compiling your VI, the normally white, intact Run arrow will be gray
and broken, as shown in Fig. 10. If you click on it, you will get an Error list, which
will show descriptions of the errors in your front panel and block diagram. If you
click the ShowWarnings checkbox, you will also see warnings that do not necessarily
prevent compilation, but are bad programming practice and can lead to bugs.

Figure 10: A block diagram toolbar with debugging tools highlighted.

You click the Highlight execution button (a lightbulb) to visually show the VI ex-
ecution. This is much like a standard debugger and reduces performance. Finally,
you can select single-step modes to step into or step over a node in a black diagram.

You can insert breakpoints into your code using the Breakpoint button on the
Tools Palette (Fig. 11). You can also insert a probe, allowing you to observe variable
values while your VI is running.

8

http://www.ni.com/pdf/manuals/373353c.pdf

Figure 11: Left, illustration of break points and probe tools. Right, example
probe watch window.

2.4 Case structures (LabVIEW’s if else if)

Case structures allow you to implement if else if-type statements in LabVIEW.They
behave like switch cases in C and Java. Their graphical representation is illustrated in
Fig. 12.

Figure 12: Case structures with different types of input.

Let us consider first the case structure that takes a Boolean as input. There are
then only two possible cases, TRUE or FALSE. To enter objects into the case structure,
you need to place objects and wires in the box. To toggle between what operations
happen in the TRUE case and the FALSE case, you click on the menu at the top of the
case structure box.

Wecan also input a string orEnum control (a ring-style control—remember“con-
trol” is LabVIEW speak for “input”). If this type of control comes into the case
structure, you are unrestricted in the options for the cases, i.e., you are no longer re-
stricted to either TRUE or FALSE. Therefore, you must specify a default case (akin
to the else clause of an if else if statement).

Finally, you can have numeric control. LabVIEW has strange behavior for nu-
meric control and, in my opinion, you are asking for bugs if you directly input nu-
meric control. I will therefore not comment any further on this, and just advise you
not to do it.

9

2.5 Modular programming: SubVIs

When you write text-based code, you often write functions that do specific, small
tasks. They have a prototype; they takin input, perform operations on it, and then
return output. You larger scale program or project calls these functions in succes-
sion, perhaps with logic and looping. This is generally good practice, to domodular
programming.

The same is true for LabVIEW. Any VI you write can be incorporated into another
VI.When a VI is used in another, it is called a subVI. When building your LabVIEW
programs, you should create many small VIs that performwell-defined takes that are
simply and clearly connected in your main VI.

To have a concrete example in mind, consider a VI that evaluates blood pressure
measurements to give a categorical characterization. The category of blood pressure
is given in the table below, where the more severe category is chosen.

Systolic Diastolic Category
< 120 AND < 80 Normal

120− 139 OR 80− 89 Prehypertension
140− 159 OR 90− 99 Stage 1 high blood pressure
≥ 160 OR ≥ 100 Stage 2 high blood pressure

The block diagram for the main VI for this program and that for the subVI are
shown in Fig. 13. This example is somewhat trivial in that the subVI is the entirety
of the routine, but serves to show how subVIs can be situated in a VI.

Figure 13: Left, block diagram of top level VI for a categorial indicator of blood
pressure. Right, the block diagram for the subVI at the heart of the program.

To make your existing VI capable of being inserted as a subVI, you need to take
a few steps working on the front panel of your VI. In the upper right corner of the

10

VI is an icon that looks like an an oscilloscope with an addition operator. This will
be the icon representing your subVI when you insert it in another VI. To edit this,
right click on the icon an select Edit Icon.... You can then edit the icon with rather
primitive and annoying tools. I usualy just make the icon a box with text in it.

After choosing your icon, you need to specify how your subVI connects to con-
trols and indicators (inputs and outputs). To do this, right click on the icon and
select Show Connector (step 1 in Fig. 14). Click on the connector, which not replaces
the icon. (On newer versions of LabVIEW, the connector is always shown next to
the icon.) Right click the connector and select Patterns, and a palette of connector
patterns appears. The default pattern is a 4× 2× 2× 4 This allows for four inputs
to the left and four outputs to the right. Some LabVIEW users advocate for always
using the default, even if you do not need that many inputs and outputs. I advocate
against this because this is poor programming practice: you should prototype your
subVI so that you know what inputs and outputs to expect. You should pick the in-
put/output pattern that is appropriate for your function. Next, use the wiring tool to
select which controls and indicators in your front panel correspond to which inputs
and outputs in your connector pattern (steps 3 and 4 for Fig. 14). After saving, you
will have a subVI that you can plop into any other VI you aremaking. The inputs and
outputs behave like the controls and indicators of the front panel of the original VI.

Figure 14: The steps to enabling a VI to be a subVI.

To add a subVI to a block diagram you are working on, scroll to the bottom of

11

the Functions Palette and click on Select a VI.... You will then be able to wire it up
according to your specification of the connector pattern.

To get an overview of how all of the subVIs are connected and depend on each
other in a top level VI, click on View→ VI Hierarchy.

12

